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A novel and efficient method for the synthesis of 1,2-diazetidines
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Abstract—A novel and efficient method has been developed for the preparation of racemic or optically pure 1,2-diazetidine from
1-(1-hydroxy-propan-2-yl)hydrazine-1,2-dicarboxylate under very mild conditions with excellent yield.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

1,2-Diazetidine is an important moiety in organic and
medicinal chemistry.1,2 So far, there have been a limited
number of efficient synthetic methods developed for its
synthesis. Currently, the most popular synthetic method
involves the use of [2+2] cycloaddition reaction.1 A few
examples utilizing intramolecular cyclization to prepare
1,2-diazetidine have also been reported.2,3 As one of our
on-going programs, we need to develop a more efficient
method to prepare 1,2-diazetidines, particularly the 3-
substituted 1,2-diazetidine 1. We envisioned the prepa-
ration of such compounds via intramolecular cyclization
of 1-(1-hydroxy-3-propan-2-yl)hydrazine derivatives 2
as illustrated in Figure 1.

We firstly tested the intramolecular Mitsunobu reaction
of the dibenzyl 1-(1-hydroxy-3-phenylpropan-2-yl)-
hydrazine-1,2-dicarboxylate 2a, which was in turn
prepared readily from 3-phenylpropanal according to
the protocol described by List.4 To our satisfaction,
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Figure 1. Retrosynthetic analysis for the synthesis of 1-substituted 1,2-
diazetidine.
the desired 1,2-diazetidine derivative 1a was obtained
in 88% yield.

Despite the success achieved with Mitsunobu reaction as
shown in Scheme 1, we encountered problems with the
final product purification (removal of triphenyl phos-
phine oxide). In light of this issue, we decided to develop
other milder and cleaner reaction conditions for such
cyclizations. We considered activation of the hydroxyl
group to a better leaving group such as mesylate, which
could then be displaced by the nitrogen nucleophile
(within 2a) through an intramolecular cyclization
process to give the desired 1,2-diazetidine (such as 1a)
as depicted in Scheme 2.

Treatment of dichloromethane solution of 2a with
1.5 equiv of MsCl along with 3 equiv of Et3N resulted
in only trace amount of the desired product 1a. The
major product formed was the intermediate 3 as judged
by LC–MS (entry A). No improvement was observed
even under prolonged heating. When the same reaction
was tried in the presence of 8 equiv of Et3N, the desired
product 1a was obtained in 25% yield (entry B). Interest-
ingly, replacement of Et3N with DIEA led to only 5% of
the desired product (entry C). In contrast, replacing
Et3N by DBU afforded the desired product 1a in almost
quantitative yield (entry D). Detailed experimental pro-
cedure for this intramolecular cyclization is provided in
Ref. 5. When K2CO3 or Cs2CO3 was used as base in
conjunction with acetonitrile as solvent, the desired
diazetidine 1a was produced in 85% or 92% yield,
respectively (entries E and F) (Scheme 3).

To further probe the generality of above method, we
examined the cyclizations with a series of 1-(1-hydr-
oxy-propan-2-yl)hydrazine-1,2-dicarboxylate derivatives
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Scheme 1. Intramolecular Mitsunobu cyclization method.
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Scheme 2. One-pot synthesis of 1-substituted 1,2-diazetidine.
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Scheme 3. The synthesis of the optically pure 1,2-diazetidine.

Table 2. Generation of cyclizations
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Entry R1 R2 Yield (%)

G PhCH2– Cbz 96
H PhCH2– COOEt 90
I PhCH2– COOiPr 90
J PhCH2– Boc 85
K CH3– Cbz 96
L CH3CH2CH2– Cbz 95
M (CH3)2CH2– Cbz 93
N CH3(CH2)3� Cbz 93
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bearing different R1 and R2 groups under the reaction
conditions described in entry D of Table 1. The results
are summarized in Table 2. To our satisfaction, all of
the substrates examined (entries G–N), regardless of
the nature of R1 and R2 moieties used, gave the corre-
sponding 1,2-diazetidines in excellent yield.

Since the acyclic intermediate 2a can be prepared in ena-
tiomerically pure form,4 we envisioned that the two-step
sequence discussed in this letter could be used to prepare
optically pure 1,2-diazetidine derivatives. Thus, the opti-
cally pure precursor (S)-2a was prepared from proline-
catalyzed amination of 3-phenylproponal with Cbz pro-
tected azodicarboxylate according to the protocol of
List.4 Further treatment of (S)-2a with MsCl in the pres-
ence of DBU led to the formation of enatiomerically
pure (S)-1-benzyl-1,2-diazetidine 1a in 96% yield. The
ee value of 1a was determined to be 98% on the basis
of chiral HPLC analysis.6
Table 1. Optimization of the reaction conditions

Entry Base Equivalent Solvent Reaction
time

Yield
(%)

A Et3N 3 CH2Cl2 2 days Trace
B Et3N 8 CH2Cl2 2 days 25
C DIEA 8 CH2Cl2 2 days 5
D DBU 8 CH2Cl2 6 h 96
E K2CO3 8 CH3CN 2 days 85
F Cs2CO3 8 CH3CN 1 day 92
2. Conclusions

We describe herein a general and efficient method for the
synthesis of 3-substituted racemic or chiral 1,2-diazeti-
dine from 1-(1-hydroxy-propan-2-yl) hydrazine-1,2-
dicarboxylate under very mild conditions in excellent
yield.
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